朱海龙教授
发布时间: 2021-04-07 浏览次数: 4982


我的证件照

姓名

朱海龙

职称、学位

教授、博士研究生

邮箱

120081531aufe.edu.cn

专业

数学

研究方向

动力系统、数值计算


姓名,朱海龙,男,19801月生,安徽蚌埠人,毕业于河海大学数学专业,理学博士。现为安徽财经大学教授,硕士生导师。研究领域与方向为数值分析与计算,动力系统理论分析与数值计算,深度学习。

一、主讲课程

为本科生开设《微积分》、《数值分析》等课程。

二、科研项目

1.主持2016年度中国博士后科学基金第59批面上资助项目:随机微分方程的依均方指数二分的理论分析与数值模拟,编号:2016M591697.

2.主持2016年度高校优秀中青年骨干人才国内外访学研修重点项目,编号:gxfxZD2016090.

3.主持2014年国家自然科学基金青年项目(National Natural Science Foundation of China):随机动力系统的非一致指数二分性及其数值模拟, 编号:11301001.

4.主持2014年安徽省教育厅高校优秀青年基金重点项目(Excellent Youth Scholars Foundation and the Natural Science Foundation of Anhui Province of PR China):随机系统的非一致行为及其在经济学中的应用,编号:2013SQRL030ZD.

5.主持2009年安徽省教育厅青年项目:非线性椭圆型方程多解计算的L-S理论及算法研究,编号:2009SQRZ083,结项编号:KYJX1051.

6.主持2012年安徽省教育厅项目:椭圆型微分方程多解的理论研究与分歧新算法,编号:KJ2012B004,结项编号:KYJX1309.

三、教研项目

1.主持2015年安徽财经大学校级一般研究项目:《金融数值分析》双语课程案例教学的探索,编号:acjyyb2015114.

2.主持2016年安徽财经大学校级示范课程:《数值分析》示范课程,编号:acsfkc201602.

四、论文

[1]徐健,朱海龙,朱江乐,.基于物理信息神经网络的Burgers-Fisher方程求解方法. 浙江大学学报(工学版), 2023, 57(11): 2160-2169.

[2]H. Zhu(朱海龙), Robustness of nonuniform mean-square exponential dichotomies, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1-43. doi:10.1017/prm.2023.23.

[3]J. Chu, F. Liao, S. Siegmund, Y. Xia, H. Zhu(朱海龙), Nonuniform dichotomy spectrum and reducibility for nonautonomous difference equations. Adv. Nonlinear Anal. 11(1), 369-384 (2022).

[4]H. Zhu(朱海龙), L. Chen, Nonuniform mean-square exponential dichotomies and mean-square exponential stability, Nonlinear Analysis, 2020, 196, 111806.

[5]H. Zhu(朱海龙), Z. Li, Nonuniform dichotomy spectrum intervals: theorem and computation, J. Appl. Anal. Comput. 2019, 9(3): 1102-1119.

[6]H. Zhu(朱海龙), J.Chu, W. Zhang, Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity, Discrete Contin. Dyn. Syst. 2018, 38(4): 1935-1953.

[7]H. Zhu(朱海龙), F. Liao, Almost Automorphic Solutions of Non-autonomous Differential Equations Bull. Iran. Math. Soc. (2018) 44:205–223.

[8]H. Zhu(朱海龙), Y. Jiang, Robustness of mean-square exponential dichotomies for linear stochastic equations, Electron. J. Differential Equations, 2017, (123): 1-13.

[9]S. Li, F. Liao, H. Zhu(朱海龙), Periodic solutions of damped Duffing-type equations with singularity, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2017, (18): 8–16.

[10]H. Zhu(朱海龙), J.Chu, Mean-square exponential dichotomy of numerical solutions to stochastic differential equations, J. Appl. Anal. Comput. 2016, 6(2): 463-478.

[11]F. Wang, F. Zhang, H. Zhu(朱海龙),, S. Li, Periodic orbits of nonlinear first-order general periodic boundary value problem, Filomat, 2016, 30(13): 3427-3434.

[12]K. Wang, Y. Zhu, H. Zhu(朱海龙), New results on the stochastic Gilpin-Ayala model with delays, Filomat, 2016, 30(6): 1431-1440.

[13]H. Zhu(朱海龙), C. Zhang, Y. Jiang, A Perron-type theorem for nonautonomous difference equations with nonuniform behavior, Electron. J. Qual. Theory Differ. Equ., 2015 (36): 1-15.

[14]H. Zhu(朱海龙), S. Li, Multiplicity of positive periodic solutions to nonlinear boundary value problems with a parameter, J. Appl. Math. Comput., 2015: 1-12.

[15]J. Chu, S. Li, H. Zhu(朱海龙), Non trivial periodic solutions of second order singular damped dynamical systems, Rocky Mountain J. Math. 2015, 45(2): 457-474.

[16]F. Wang, H. Zhu(朱海龙), Existence, uniqueness and stability of periodic solutions of a doffing equation under periodic and anti-periodic eigenvalues conditions, Taiwanese J. Math. 2015, 19(5): 1457-1468.

[17]S. Li, F. Liao, H. Zhu(朱海龙), Multiplicity of positive solutions to second-order singular differential equations with a parameter, Bound. Value Probl., 2014, 2014(1): 115.

[18]S. Li, F. Liao, H. Zhu(朱海龙), periodic solutions of second order non-autonomous differential systems, Fixed Point Theory, 2014, 15(2): 487-494.[19]J. Chu, H. Zhu(朱海龙), Lyapunov regularity for random dynamical systems, Bull. Sci. Math., 2013, 137(5): 671-687.

[20]H. Zhu(朱海龙), Z. Li, Newton’s method based on bifurcation for solving multiple solutions of nonlinear elliptic equations, Math. Methods Appl. Sci., 36 (2013) 2208-2223.

[21]Z. Li, Z. Yang, H. Zhu(朱海龙),  Bifurcation method for computing the multiple positive solutions to p-Henon equation,  Appl. Math. Comput., 2013, 220(1): 593-601.

[22]H. Zhu(朱海龙), S. Li, Existence and multiplicity results for nonlinear differential equations depending on a parameter in semipositone Case, Abstr. Appl. Anal., 2012, Art. ID 215617, 10 pp.

[23]H. Zhu(朱海龙), Z. Li, Z. Yang, Analysis and computation for a class of semilinear elliptic boundary value problems, Comput. Math. Appl., 2012, 64(8): 2735–2743.

[24]Z. Li, Z. Yang, H. Zhu(朱海龙), A bifurcation method for solving multiple positive solutions to the boundary value problem of the Henon equation on a unit disk, Comput. Math. Appl., 2011, 62(10): 3775-3784.

[25]Z. Li, H. Zhu(朱海龙), Z. Yang, Bifurcation method for solving multiple positive solutions to Henon equation on the unit cube, Commun. Nonlinear Sci. Numer. Simulat., 2011, 16(9): 3673-3683.

[26]H. Zhu(朱海龙), Z. Li, Newton’s method’s basin of attraction for sign-changing solutions of concave and convex nonlinearities, Appl. Math. Comput., 2010, 217(7): 2937-2943.

[27]H. Zhu(朱海龙), Z. Li, K. Zhuang, A Contractor Iteration Method Using Eigenpairs for Positive Solutions of Nonlinear Elliptic Equation, Int. J. Comput. Math. Sci., 2010, 4(4): 202-205.

[28]Z. Li, Z. Yang, H. Zhu(朱海龙), Bifurcation method for solving multiple positive solutions to Henon equation, Sci. China Ser. A, 2008, 51(12): 2330-2342.

五、科研获奖

  2016年论文《Newtons method based on bifurcation for solving multiple solutions of nonlinear elliptic equations》被评为第八届安徽省自然科学优秀学术论文三等奖。

六、指导学科竞赛获奖

1.20227月指导的张三团队《作品名称》获全国大学生市场调查与分析大赛一等奖,颁奖部门,第一指导老师。

七、研究生培养

学术型硕士生(数量经济学专业)

2023级:孙宇

2022级:李子晗

2021级:顾铭慧

2020级:刘滢

2019级:李萍萍

2018级:高同

2017级:张睿雯