李彦君教授
发布时间: 2024-09-14 浏览次数: 103


姓名

李彦君

职称、学位

(特聘)教授、博士

邮箱

yanjlmath90@163.com

专业

基础数学

研究方向

代数编码与密码


李彦君,男,甘肃天水人,20216月博士毕业于上海师范大学基础数学专业,获理学博士学位。现为安徽财经大学特聘教授,硕士生导师,龙湖学者复旦大学博士后,导师阚海斌教授。20199月至20208月在新加坡国立大学访问,导师Chik How Tan教授。担任国家自然科学基金通讯评审专家,美国数学评论Mathematical Reviews评论员,以及国际著名SCI期刊《IEEE Transactions on Information TheoryCryptography and CommunicationsAdvances in Mathematics of Communications等的匿名审稿人。研究领域包括密码学、编码学、组合数学、离散数学等。

一、主讲课程

为本科生开设《线性代数》《概率论与数理统计》《微积分》《最优化方法》等课程。

二、科研项目

1.主持国家自然科学基金青年项目,“两类新型密码函数的设计及其应用”(62302001),2024.01-2026.12, 在研。

2.主持中国博士后科学基金第74批面上项目,“Bent函数的构造及其在设计平衡函数中的应用”(2023M740714),2023.11-2025.09, 在研。

3.主持安徽省高校科研计划项目重点项目,“性质优良的密码函数的构造研究”,(2023AH050250),2023.05-2025.05, 在研。

4.参与国家自然科学基金面上项目,“4-差分置换与向量Bent函数的密码性质及构造”(61972258),2020.01-2023.12, 在研。

5.参与安徽省教育厅, 优秀青年科研项目,“图与符号图中若干结构性质的谱刻画”(2022AH030073),2022,12-2025.12, 在研。

三、已发表科研论文

  1. Changhui Chen, Haibin Kan, Yanjun Li, Jie Peng, Lijing Zheng, Several classes of permutation  polynomials of the form $(x^{p^m}-x+\delta)^s+L(x)$, Advances in Mathematics of Communications, 2024, Early Access  (通讯作者)

  2. Yanjun Li, Jinjie Gao, Haibin Kan, Jie Peng, Lijing Zheng, Changhui Chen, Characterization for a Generic Construction of Bent Functions and Its Consequences. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2024 (已接收)

  3. Lijing Zheng, Haibin Kan, Tongliang Zhang, Jie Peng, Yanjun Li, Two classes of permutation trinomials over Fq3 in characteristic two. Finite Fields and TheirApplications, 2024, 94: 102354.

  4. Changhui Chen, Haibin Kan, Jie Peng, Lijing Zheng, Yanjun Li, Three classes of permutation quadrinomials in odd characteristic. Cryptography and Communications, 2024, 16(2): 351-365.

  5. Lijing Zheng, Haibin Kan, Jie Peng, Yanjun Li, Yanbin Zheng, A new class of generalized almost perfect nonlinear monomial functions. Information Processing Letters, 2024, 184: 106445.

  6. Yanjun Li, Jie Peng, Haibin Kan, Lijing Zheng, Minimal Binary Linear Codes from Vectorial Boolean Functions. IEEE Transactions on Information Theory, 2023, 69 (5): 2955-2968 (信息论顶级期刊,校定A级期刊)

  7. Yanjun Li, Haibin Kan, Jie Peng, Lijing Zheng, Cryptographic Functions with Interesting Properties from CCZ-equivalence. Cryptography and Communications, 2023, 15: 831–844.

  8. Yanjun Li, Haibin Kan, Sihem Mesnager, Jie Peng, Chik How Tan, Lijing Zheng, Generic constructions of (Boolean and vectorial) bent functions and their consequences. IEEE Transactions on InformationTheory, 2022,68 (4): 2735-2751  (信息论顶级期刊,校定A级期刊)

  9. Lijing Zheng, Haibin Kan, Yanjun Li, Jie Peng, Deng Tang, Constructing New APN Functions Through Relative Trace Functions. IEEE Transactions on Information Theory, 2022, 68 (11): 7528-7537  (信息论顶级期刊,校定A级期刊)

  10. Yanjun Li, Jie Peng, Chik How Tan, Haibin Kan, Lijing Zheng, Further constructions of bent functions and their duals. IET Information Security, 2021, 15 (1): 87-97.

  11. Yanjun Li, Haibin Kan, Jie Peng, Chik How Tan, Baixiang Liu, The Explicit Dual of Leander's Monomial Bent Function. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104: 1357-1360.

  12. Yanjun Li, Haibin Kan, Jie Peng, Chik How Tan, Baixiang Liu, A New 10-variable Cubic Bent Function Outside The Completed Mariorana-McFarland Class. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2021, E104: 1353-1356

  13. Lijing Zheng, Jie Peng, Haibin Kan, Yanjun Li, Juan Luo, On constructions and properties of (n, m)-functions with maximal number of bent components. Designs, Codes and Cryptography, 2020, 88: 2171-2186.

  14. Yanjun Li, Jie Peng, Chik How Tan, An answer to an open problem of Mesnager on bent functions. Information Processing Letters, 2020, 161: 105974.

  15. Yanjun Li, Haibin Kan, Jie Peng, Chik How Tan, SAO 1-Resilient Functions With Lower Absolute Indicator in Even Variables. IEEE Access, 2020, 8: 222377-222384.

  16. Lijing Zheng, Jie Peng, Haibin Kan, Yanjun Li, Several new infinite families of bent functions via second order derivatives, Cryptography and Communications, 2020, vol.12, pp.1143–1160

  17. Qichun Wang, Yanjun Li, A Note on Minimum Hamming Weights of Correlation-Immune Boolean Functions. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2019, 102-A(2): 464-466.

四、获奖情况

1.2024年安徽财经大学优秀教师.

2.2024年安徽财经大学“兴教-谋英” 科研标兵.

3. 2022年全国大学生数学建模竞赛安徽省赛区三等奖,指导老师.

4. 2022年安徽财经大学第十三届“挑战杯”中国大学生创业计划竞赛银奖,指导老师.