| 姓名 | 郑林 |
职称、学位 | 副教授、博士 |
邮箱 | hbzhenglin@126.com |
专业 | 计算数学 |
研究方向 | 非线性数值代数 |
郑林,男,1984年4月出生,安徽萧县人。现为安徽财经大学副教授。2002-2006年,淮北师范大学数学与应用数学专业,理学学士。2006-2009年,合肥工业大学计算数学专业,理学硕士。2010-2013年,上海大学计算数学专业,理学博士。
一、发表的学术论文
1.Lin Zheng (郑林), The Picard-HSS-SOR iteration method for absolute value equations, Journal of Inequalities and Applications, 2020, 258: 1-9.
2. Lin Zheng (郑林), Semilocal convergence of a modified Chebyshev-like's method for solving nonlinear equations under generalized weak condition, Journal of Computational Analysis and Applications, 2018, 24 (2): 354-369.
3. Lin Zheng (郑林), The convergence theorem for fourth-order super-Halley method in weaker conditions, Journal of Inequalities and Applications, 2016, 289: 1-12.
4. Lin Zheng (郑林), Ke Zhang, Liang Chen, on the convergence of a modified Chebyshev-like’s method for solving nonlinear equations, Taiwanese Journal of Mathematics, 2015,19 (1): 193-209.
5. 陈亮,顾传青,郑林,非线性方程的数值迭代法及其半局部收敛性,数学进展,2014, 4: 481-495.
6. Lin Zheng (郑林), Chuanqing Gu, Fourth-order convergence theorem by using majorizing functions for super-Halley method in Banach spaces, International Journal of Computer Mathematics, 2013, 90 (2): 423-434.
7. Chuanqing Gu, Lin Zheng (郑林), Computation of Matrix Functions with Deflated Restarting, Journal of Computational and Applied Mathematics, 2013, 237: 223-233.
8. Lin Zheng (郑林), Chuanqing Gu, Semilocal convergence of a sixth-order method in Banach spaces, Numerical Algorithms, 2012, 61: 413-427.
9. Lin Zheng (郑林), Chuanqing Gu, Recurrence relations for semilocal convergence of a fifth-order method in Banach spaces, Numerical Algorithms, 2012, 59: 623–638.
10. Lin Zheng (郑林), Gongqin Zhu, A new method of constructing bivariate vector valued rational interpolation function, Journal of Mathematical Research & Exposition,2011, 31 (4), 605-616.
11. 郑林,朱功勤,构造向量值有理插值的一种新方法,高等学校计算数学学报,2011, 33 (3): 270-278.
12. Chuanqing Gu, Lin Zheng (郑林), Interpolation formula of Constructing Matrix-valued Rational Functions, Proceedings of the Ninth International Conference on Matrix Theory and Its Applications, Shanghai, 2010, 1: 72-75.
13. 朱功勤,郑林,矩形网格上的有理插值公式,自然科学进展,2009, 19 (5): 520-525.
14. 郑林,丁友平,构造向量值有理插值函数的一种方法,合肥工业大学学报(自然科学版),2008, 31 (11): 1898-1899.
二、主持的科研项目
1.郑林,Banach空间中非线性方程若干高阶迭代算法的半局部收敛性分析及其应用研究(项目编号:KJ2014A003),2014年安徽省高校自然科学重点研究项目。
三、科研和教学获奖
四、专著和主编教材